EE 5301 - VLSI Design Automation I	
Part III: Partitioning	
Kia Bazargan	
University of Minnesota	
Finme	

References and Copyright	
	Textbooks referred (none required) - [Mic94] G. De Micheli "Synthesis and Optimization of Digital Circuits" McGraw-Hill, 1994. - [CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms" MIT Press, 1990. - [Sar96] M. Sarrafzadeh, C. K. Wong "An Introduction to VLSI Physical Design" McGraw-Hill, 1996. - [She99] N. Sherwani "Algorithms For VLSI Physical Design Automation" Kluwer Academic Publishers, $3^{\text {rd }}$ edition, 1999.
Fall 2005	5 EE S301-VLSIDCsign Atumation 1

	References and Copyright (cont.)
	- Slides used: (Modified by Kia when necessary) - [@Sarrafzadeh] © Majid Sarrafzadeh, 2001; Department of Computer Science, UCLA - [@Sherwani] © Naveed A. Sherwani, 1992 (companion slides to [She99]) - [@ Keutzer] © Kurt Keutzer, Dept. of EECS, UC-Berekeley http://www-cad.eecs.berkeley.edu/~niraj/ee244/index.htm - [©Gupta] © Rajesh Gupta UC-Irvine http://www.ics.uci.edu/~rgupta/ics280.html - [©Kang] © Steve Kang UIUC http://www.ece.uiuc.edu/ece482/

\qquad

Partitioning: Formal Definition
- Input:
- Graph or hypergraph
- Usually with vertex weights (sizes)
- Usually weighted edges
- Constraints
- Number of partitions (K-way partitioning)
- Maximum capacity of each partition
OR
maximum allowable difference between partitions
- Objective
- Assign nodes to partitions subject to constraints
s.t. the cutsize is minimized
- Tractability
- Is NP-complete 8
Feral 200s

Kernighan-Lin (KL) Example

Step No.	Vertex Pair	Gain	Cut-cost
0	--	0	5
1	$\{\mathrm{~d}, \mathrm{~g}\}$	3	2
2	$\{\mathrm{c}, \mathrm{f}\}$	1	1
3	$\{\mathrm{~b}, \mathrm{~h}\}$	-2	3
4	$\{\mathrm{a}, \mathrm{e}\}$	-2	5
Fall 2005			[@Sarrafzadeh]

Kernighan-Lin (KL) : Analysis

- Time complexity?
- Inner (for) loop
- Iterates $\mathrm{n} / 2$ times
- Iteration $1:(n / 2) \times(n / 2)$
o Iteration i: $(\mathrm{n} / 2-\mathrm{i}+1)^{2}$.
- Passes? Usually independent of n
- O(n3)
- Drawbacks?
- Local optimum
- Balanced partitions only
- No weight for the vertices
- High time complexity
- Hyper-edges? Weighted edges?

Fall 2005 EE 5301 - VLSI Design Automation I H-12

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { - ... And after the move }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: KL (cont.)

- Step 3 - compute gains
$g_{21}=D_{2}+D_{1}-2 C_{21}=(-1)+(+1)-2(1)=-2$
$g_{25}=D_{2}+D_{5}-2 C_{25}=(-1)+(+0)-2(0)=-1$
$\mathrm{g}_{26}=\mathrm{D}_{2}+\mathrm{D}_{6}-2 \mathrm{C}_{26}=(-1)+(+0)-2(0)=-1$
$g_{31}=D_{3}+D_{1}-2 C_{31}=(-1)+(+1)-2(0)=0$
$g_{35}=D_{3}+D_{5}-2 C_{35}=(-1)+(0)-2(0)=-1$
$g_{36}=D_{3}+D_{6}-2 C_{36}=(-1)+(0)-2(0)=-1$
$g_{41}=D_{4}+D_{1}-2 C_{41}=(+1)+(+1)-2(0)=+2$
$g_{45}=D_{4}+D_{5}-2 C_{45}=(+1)+(+0)-2(+1)=-1$
$g_{46}=D_{4}+D_{6}-2 C_{46}=(+1)+(+0)-2(+1)=-1$
- The largest g value is $g_{41}=+2$
\Rightarrow interchange 4 and $1 \quad\left(a_{1}, b_{1}\right)=(4,1)$
$A^{\prime}=A^{\prime}-\{4\}=\{2,3\}$
$B^{\prime}=B^{\prime}-\{1\}=\{5,6\} \quad$ both not empty
Fall $2005 \quad$ EE 5301 - VLSI Design Automation I
[©Kang]

Example: KL (cont.)	
$\begin{aligned} & \text { - Step } 4 \text { - update } D \text { values of node connected to vertices }(4,1) \\ & D_{2}^{\prime}=D_{2}+2 C_{24}-2 C_{21}=(-1)+2(+1)-2(+1)=-1 \\ & D_{5}^{\prime}=D_{5}+2 C_{51}-2 C_{54}=+0+2(0)-2(+1)=-2 \\ & D_{6}^{\prime}=D_{6}+2 C_{61}-2 C_{64}=+0+2(0)-2(+1)=-2 \end{aligned}$	
- Assign $D_{i}=D_{i}^{\prime}$, repeat step 3$\begin{aligned} & \mathrm{g} 25=\mathrm{D}_{2}+\mathrm{D}_{5}-2 \mathrm{C}_{25}=-1-2-2(0)=-3 \\ & \mathrm{~g} 26=\mathrm{D}_{2}+\mathrm{D}_{6}-2 \mathrm{C}_{26}=-1-2-2(0)=-3 \\ & \mathrm{~g} 35=\mathrm{D}_{3}+\mathrm{D}_{5}-\mathrm{C}_{35}=-1-2-2(0)=-3-3(0)=-3 \\ & \mathrm{~g} 36=\mathrm{D}_{3}+\mathrm{D}_{6}-2 \mathrm{C}_{36}=-1-2-2(0)=-2 \end{aligned}$	
- All values are equal; arbitrarily choose $g_{36}=-3 \Rightarrow$ $A^{\prime}=A^{\prime}-\{3\}=\{2\}, \quad B^{\prime}=B^{\prime}-\{6\}=\{5\}$ New D values are:$\begin{aligned} & \mathrm{D}_{2}^{\prime}=\mathrm{D}_{2}+2 \mathrm{C}_{23}-2 \mathrm{C}_{26}=-1+2(1)-2(0)=+1 \\ & \mathrm{D}_{5}^{\prime}=\mathrm{D}_{5}+2 C_{56}-2 C_{53}=-2+2(1)-2(0)=+0 \end{aligned}$	
New gain with $D_{2} \leftarrow D_{2}{ }^{\prime}, D_{5} \leftarrow D_{5}{ }^{\prime}$$\mathrm{g}_{25}=\mathrm{D}_{2}+\mathrm{D}_{5}-2 \mathrm{C}_{52}=+1+0-2(0)=+1 \Rightarrow(\mathrm{a} 3, \mathrm{~b} 3)=(2,5)$	
all 2005	

\qquad $\mathrm{D}_{2}{ }^{\prime}=\mathrm{D}_{2}+2 \mathrm{C}_{24}-2 \mathrm{C}_{21}=(-1)+2(+1)-2(+1)=-1$ $D_{6}^{\prime}=D_{6}+2 C_{51}-2 C_{64}=+0+2(0)-2(+1)=-2$ \qquad
g26 $=D_{2}+D_{1} \cdot 2 C_{2}=-1-2-2(0)=-3$
$\mathrm{g} 35=\mathrm{D}_{3}+\mathrm{D}_{5}-2 \mathrm{C}_{35}=-1-2-2(0)=-3$

- All values are equal;
$(a 2, b 2)=(3,6)$
$A^{\prime}=A^{\prime}-\{3\}=\{2\}, \quad B^{\prime}=B^{\prime}-\{6\}=\{5\}$
New D values are:
$D_{5}^{\prime}=D_{5}+2 C_{56}^{\prime}-2 C_{53}=-2+2(1)-2(0)=+0$
- New gain with $D_{2} \leftarrow D_{2}{ }^{\prime}, D_{5} \leftarrow D_{5}^{\prime}$ $g_{25}=D_{2}+D_{5}-2 C_{52}=+1+0-2(0)=+1 \Rightarrow(a 3, b 3)=(2,5) \quad[\odot$ Kang

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fiduccia-Mattheyses (FM) Algorithm

- Modified version of KL
- A single vertex is moved across the cut in a single move
- \rightarrow Unbalanced partitions
- Vertices are weighted
- Concept of cutsize extended to hypergraphs
- Special data structure to improve time complexity to $0\left(n^{2}\right)$
- (Main feature)
- Can be extended to multi-way partitioning
C. M. Fiduccia and R. M. Mattheyses, $19^{\text {th }}$ DAC, 1982.

Fall 2005 EE 5301 - VLSI Design Automation I Ш-22

The FM Algorithm: Data Structure

- Pmax
- Maximum gain
- $p_{\max }=d_{\text {max }} . w_{\text {max }}$, where
$\mathrm{d}_{\text {max }}=\max$ degree of a vertex (\# edges incident to it)
$\mathrm{w}_{\text {max }}$ is the maximum edge weight
- What does it mean intuitively?
- -Pmax .. Pmax array
- Index i is a pointer to the list of unlocked vertices with gain i.
- Limit on size of partition
- A maximum defined for the sum of vertex weights in a partition
(alternatively, the maximum ratio of partition sizes might be defined)

EE 5301 - VLSI Design Automation I

FM Gain Calc: Direct Hyperedge Calc (cont.)
Gain of cell depends only on its critical nets:

- If a net is not critical, its cutstate cannot be affected by he move
- A net which is not critical either before or after a move cannot influence the gains of its cells
- Let F be the "from" partition of cell i and T the "to":
$g(1)=$ FS(I) - TE(i), where:
= side

$[$ ©Keutzer]
$\mathrm{W}-29$
\qquad

To Probe Further...	
B	B. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning of Electrical Circuits", Bell System Technical Journal", pp291-307, 1970.
	C. M. Fiduccia and R. M. Mattheyses. "A linear-time heuristic for improving network partitions", Proceedings of the Design Automation Conference, pp 174-181, 1982.
	George Karypis, Rajat Aggarwal, Vipin Kumar and Shashi Shekhar, "Multilevel hypergraph partitioning: application in VLSI domain", Design Automation Conference, pp. 526-529, 1997.
	George Karypis and Vipin Kumar, "Multilevel k-way hypergraph partitioning", Design Automation Conference, pp. 343-348, 1999.
	A. E. Caldwell, A. B. Kahng and I. L. Markov, "Hypergraph Partitioning With Fixed Vertices", Design Automation Conference (DAC), pp. 355-359, 1999.
	A. E. Caldwell, A. B. Kahng, I. L. Markov, "Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning", ACM Journal on Experimental Algorithms, Vol. 5, 2000.
Fall 2005	EE 5301- VLSI Design Automation I W-34

