

References and Copyright

- Textbooks referred (none required)
 [Mic94] G. De Micheli
 "Synthesis and Optimization of Digital Circuits" McGraw-Hill, 1994.
 - [CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms" MIT Press, 1990.
 - [Sar96] M. Sarrafzadeh, C. K. Wong "An Introduction to VLSI Physical Design" McGraw-Hill, 1996.

Fall 2005

[She99] N. Sherwani
 "Algorithms For VLSI Physical Design Automation"
 Kluwer Academic Publishers, 3rd edition, 1999.

EE 5301 - VLSI Design Automation I

References and Copyright (cont.)

• S	lides used: (Modified by Kia when necessary)
•	[©Sarrafzadeh] © Majid Sarrafzadeh, 2001; Department of Computer Science, UCLA
•	[©Sherwani] © Naveed A. Sherwani, 1992 (companion slides to [She99])
•	[©Keutzer] © Kurt Keutzer, Dept. of EECS, UC-Berekeley http://www-cad.eecs.berkeley.edu/~niraj/ee244/index.htm
•	[©Gupta] © Rajesh Gupta UC-Irvine
	http://www.ics.uci.edu/~rgupta/ics280.html
•	[©Kang] © Steve Kang UIUC
	http://www.ece.uluc.edu/ece482/
Fall 2005	EE 5301 - VLSI Design Automation I

ш

http://www.ece.umn.edu/users/kia/Courses/EE5301/

	Hierarchical Partitioning	
• Le	evels of partitioning: System-level partitioning: Each sub-system can be designed as a single Board-level partitioning: Circuit assigned to a PCB is partitioned into se each fabricated as a VLSI chip Chip-level partitioning: Circuit assigned to the chip is divided into ma sub-circuits NOTE: physically not necessary	PCB ub-circuits nageable
		[©Sherwan
Fall 2005	EE 5301 - VLSI Design Automation I	III 6

Partitioning: Formal Definition

- Input:
 - Graph or hypergraph
 - Usually with vertex weights (sizes)
 - Usually weighted edges
- Constraints
 - Number of partitions (K-way partitioning)
 - Maximum capacity of each partition OR
 - maximum allowable difference between partitions
- Objective

all 2005

- Assign nodes to partitions subject to constraints s.t. the cutsize is minimized
- Tractability
 - Is NP-complete ⊗
 - EE 5301 VLSI Design Automation 1

Kernighan-Lin (KL) Algorithm	
 On non-weighted graphs 	
 An iterative improvement technique 	
A two-way (bisection) partitioning algorithm	
• The partitions must be balanced (of equal size)	
 Iterate as long as the cutsize improves: 	
 Find a pair of vertices that result in the largest decrease in cutsize if exchanged 	
 Exchange the two vertices (potential move) 	
 "Lock" the vertices 	
 If no improvement possible, and still some vertices unlocked, then exchange vertices that result in smallest increase in 	
cutsize	
W. Kernighan and S. Lin, Bell System Technical Journal, 1970.	
Fall 2005 EE 5301 - VLSI Design Automation I	III-9

VLSI Design Automation I – © Kia Bazargan

ш

Kernighan-Lin (KL) : Analysis	
Time complexity?	
 Inner (for) loop 	
o Iterates n/2 times	
o Iteration 1: (n/2) x (n/2)	
o Iteration i: $(n/2 - i + 1)^2$.	
Passes? Usually independent of n	
 O(n³) 	
Drawbacks?	
 Local optimum 	
 Balanced partitions only 	
 No weight for the vertices 	
 High time complexity 	
Hyper-edges? Weighted edges?	
Fall 2005 EE 5301 - VLSI Design Automation I	III-1

VLSI Design Automation I – © Kia Bazargan

	Example: KL (cont.)	
•	Step 3 - compute gains $g_{21} = D_2 + D_1 - 2C_{21} = (-1) + (+1) - 2(1) = -2$ $g_{25} = D_2 + D_5 - 2C_{25} = (-1) + (+0) - 2(0) = -1$ $g_{26} = D_2 + D_6 - 2C_{26} = (-1) + (+0) - 2(0) = -1$ $g_{31} = D_3 + D_1 - 2C_{31} = (-1) + (+1) - 2(0) = 0$ $g_{35} = D_3 + D_5 - 2C_{35} = (-1) + (0) - 2(0) = -1$ $g_{46} = D_4 + D_1 - 2C_{41} = (+1) + (+1) - 2(0) = +2$ $g_{46} = D_4 + D_6 - 2C_{45} = (+1) + (+0) - 2(+1) = -1$	
	The largest g value is $g_{41} = +2$ \Rightarrow interchange 4 and 1 $A' = A' - \{4\} = \{2, 3\}$ $B' = B' - \{1\} = \{5, 6\}$ both not empty	
Fall 2005	EE 5301 - VLSI Design Automation I	[©Kang

VLSI Design Automation I – © Kia Bazargan

http://www.ece.umn.edu/users/kia/Courses/EE5301/

To Probe Further...

- B. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning of Electrical Circuits", Bell System Technical Journal", pp291-307, 1970.
- C. M. Fiduccia and R. M. Mattheyses. "A linear-time heuristic for improving network partitions", Proceedings of the Design Automation Conference, pp 174-181, 1982.
- George Karypis, Rajat Aggarwal, Vipin Kumar and Shashi Shekhar, "Multilevel hypergraph partitioning: application in VLSI domain", Design Automation Conference, pp. 526-529, 1997.
- George Karypis and Vipin Kumar, "Multilevel k-way hypergraph partitioning", Design Automation Conference, pp. 343-348, 1999.
- A. E. Caldwell, A. B. Kahng and I. L. Markov, "Hypergraph Partitioning With Fixed Vertices", Design Automation Conference (DAC), pp. 355-359, 1999.
- A. E. Caldwell, A. B. Kahng, J. L. Markov, "Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning", ACM Journal on Experimental Algorithms, Vol. 5, 2000.

1

Fall 2005

EE 5301 - VLSI Design Automation I

III-3