

References and Copyright

- Textbooks referred (none required)
- [Mic94] G. De Micheli "Synthesis and Optimization of Digital Circuits" McGraw-Hill, 1994.
- [CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms" MIT Press, 1990.
- [Sar96] M. Sarrafzadeh, C. K. Wong "An Introduction to VLSI Physical Design" McGraw-Hill, 1996.
- [She99] N. Sherwani
"Algorithms For VLSI Physical Design Automation" Kluwer Academic Publishers, 3 rd edition, 1999.

Fall 2006 EE 5301 - VLSI Design Automation I U-2

References and Copyright (cont.)		
	Modified by Kia wh] © Majid Sarrafzade partment of Computer C Naveed A. Sherwan mpanion slides to [Sh Kurt Keutzer, Dept. -Berekeley .ecs.berkeley.edu/~niraj/ ajesh Gupta C-Irvine .uci.edu/~rgupta/ics2	
Fall 2006	EE 5301 - VLSI Design Automation I	H-3

[^0]\qquad
\qquad

Algorithm	
- An algorithm defines a procedure for solving a	
computational problem	
- Examples:	
○ Quick sort, bubble sort, insertion sort, heap sort	
o Dynamic programming method for the knapsack problem	
- Definition of complexity	
- Run time on deterministic, sequential machines	
- Based on resources needed to implement the	
algorithm	
o Needs a cost model: memory, hardware/gates,	
communication bandwidthetc.	
o Example: RAM model with single processor	
\rightarrow running time \propto \# operations	

\qquad

Asymptotic Notions (cont.)	
	Definition (cont.) - Big-Omega notation $f(n)=\Omega(g(n))$ if constants K and n_{0} can be found such that: $\forall \mathrm{n} \geq \mathrm{n}_{0}, \mathrm{f}(\mathrm{n}) \geq \mathrm{K} . \mathrm{g}(\mathrm{n})$ g is called a "lower bound" for f - Big-Theta notation $f(n)=\Theta(g(n))$ if g is both an upper and lower bound for f Describes the growth of a function more accurately than O or Ω Example: $\begin{aligned} & n^{3}+4 n \neq \Theta\left(n^{2}\right) \\ & 4 n^{2}+1024=\Theta\left(n^{2}\right) \end{aligned}$
\%al206	$\underbrace{6}$

- A notion that ignores the "constants" and describes the "trend" of a function for large values of the input
- Big-Oh notation $f(n)=O(g(n))$
if constants K and n_{0} can be found such that:
$\forall \mathrm{n} \geq \mathrm{n}_{0} \mathrm{f}(\mathrm{n}) \leq K$. $\mathrm{g}(\mathrm{n})$
is caled an "upper bound forf
(f is "of order" g : f will not grow larger than g by more gis than O or Ω n^{3}
$\mathrm{n}^{2}+1024\left(\mathrm{n}^{2}\right)$

EE 5301 - VLSI Design Automation I
\qquad

Asymptotic Notions (cont.)

- How to find the order of a function?
- Not always easy, esp if you start from an algorithm
- Focus on the "dominant" term
\qquad o $4 n^{3}+100 n^{2}+\log n \rightarrow O\left(n^{3}\right)$ $0 n+n \log (n) \rightarrow n \log (n)$
- $n!=K^{n}>n^{k}>\log n>\log \log n>K$ $\Rightarrow n>\log n, \quad n \log n>n, \quad n!>n^{10}$.
- What do asymptotic notations mean in practice? \qquad
- If algorithm A has "time complexity" O(n²) and algorithm B has time complexity $O(n \log n)$, then algorithm B is better \qquad
- If problem P has a lower bound of $\Omega(n \log n)$, then there is NO WAY you can find an algorithm that solves the problem in $\mathrm{O}(\mathrm{n})$ time.

Algorithm Types	
- Based on quality of solution and computational	
effort	
- Deterministic	
- Probabilistic or randomized	
- Approximation	
- Heuristics: local search	
- Problem vs. algorithm complexity	
[@Gupta]	
Eef 5301 - vLSI Design Automation I	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deterministic Algorithm Types	
- Algorithms usually used for P problems	
- Exhaustive search! (aka exponential)	
- Dynamic programming	
- Divide \& Conquer (aka hierarchical)	
- Greedy	
- Mathematical programming	
- Branch and bound	
- Algorithms usually used for NP, problems	
(not seeking "optimal solution", but a "good" one)	
- Greedy (aka heuristic)	
- Genetic algorithms	
- Simulated annealing	
- Restrict the problem to a special case that is in P	
Fall 2006	

Dynamic Programming

- (read the first two examples in the document written by Michael A. Trick - see the "Useful Links (cont.)" slide)
- Plant proposals
- Shortest path
- 0-1 Knapsack problem:
- Given N discrete items of size s_{i} and value v_{i}, how to fill a knapsack of size M to get the maximum value? There is only one of each item that can be either taken in whole or left out.
- Solution to the knapsack problem:
- http://www.cee.hw.ac.uk/~alison/ds98/node122.html

Fall $2006 \quad$ EE 5301 - VLSI Design Automation I

- Graph: set of "objects" and their "connections"
- Formal definition:
- $G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- V: set of vertices (nodes), E : set of edges (links, arcs)
- Directed graph: $e_{k}=\left(v_{i}, v_{j}\right)$
- Undirected graph: $e_{k}=\left\{v_{i}, v_{j}\right\}$
- Weighted graph: w: $E \rightarrow R, w\left(e_{k}\right)$ is the "weight" of e_{k}.

\qquad

Edge / Vertex Weights in Graphs

- Edge weights
- Usually represent the "cost" of an edge
- Examples:
o Distance between two cities - Width of a data bus
- Representation
- Adjacency matrix: instead of $0 / 1$, keep weight
o Adjacency list: keep the weight in the linked list item
- Node weight
- Usually used to enforce some "capacity" constraint
- Examples:
o The size of gates in a circuit
o The delay of operations in a "data dependency graph"

\};
dfs (v)
v.marked $\leftarrow 1$
print v
for each $(v, u) \in E$
f (u.mark != 1) // not visited yet?
dfs (u)
Algorithm DEPTH_FIRST_SEARCH (V, E)
for each $v \in V$
v.marked $\leftarrow 0 \quad / /$ not visited yet
for each $v \in V$
if (v .marked $==0$)
dfs (v)
Fall 2006 EE 5301 - VLSI Design Automation I H-22

Distance in (non-weighted) Graphs

- Distance $d_{G}(u, v)$:
- Length of a shortest $u--v$ path in G.

112006
EE 5301 - VLSI Design Automation I
H-24

\qquad

Moor's Breadth-First Search Algorithm

- Objective:
- Find $d(u, v)$ for a given pair (u, v) and a shortest path u--v
- How does it work?
- Do BFS, and assign $\lambda(w)$ the first time you visit a node. $\lambda(\mathrm{w})=$ depth in BFS.
- Data structure
- Q a queue containing vertices to be visited
- $\lambda(w)$ length of the shortest path u--w (initially ∞)
- $\pi(\mathrm{w}) \quad$ parent node of w on $\mathrm{u}-\mathrm{w}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dijkstra's Algorithm

- Objective:

- Find $d(u, v)$ for all pairs ($u, v)$ (fixed \mathbf{u}) and the corresponding shortest paths $u-\mathrm{v}$ \qquad
- How does it work?
- Start from the source, augment the set of nodes
\qquad whose shortest path is found.
- decrease $\lambda(w)$ from ∞ to $d(u, v)$ as you find shorter \qquad distances to $\mathrm{w} . \pi(\mathrm{w})$ changed accordingly.
- Data structure:
- S the set of nodes whose $d(u, v)$ is found
- $\lambda(w) \quad$ current length of the shortest path $u-$-w
- $\pi(\mathrm{w}) \quad$ current parent node of w on $\mathrm{u}-\mathrm{w}$

Dijkstra's Algorithm - why does it work?

- Proof by contradiction
- Suppose v is the first node being added to S such that $\lambda(v)>d\left(u_{0} v\right) \quad\left(d\left(u_{0} v\right)\right.$ is the "real" shortest $\mathrm{u}_{0}--\mathrm{v}$ path)
- The assumption that $\lambda(v)$ and $d\left(u_{o} v\right)$ are different, means there are different paths with lengths $\lambda(v)$ and $d\left(u_{0}, V\right)$
- Consider the path that has length $d\left(u_{0} v\right)$. Let x be the first node in S^{\prime} on this path
- $d\left(u_{0}, v\right)<\lambda(v), d\left(u_{0}, v\right) \geq \lambda(x)+\boldsymbol{\alpha}$ $\Rightarrow \lambda(x)<\lambda(v)=>$ contradiction

Static Timing Analysis

- Finding the longest path in a general graph is NP-hard, even when edges are not weighted
- Polynomial for DAG (directed acyclic graphs)
- In circuit graphs, "static timing analysis (STA)"...
- ...refers to the problem of finding the max delay from the input pins of the circuit (esp nodes) to each gate
- Max delay of the output pins determines clock period
- In sequential circuits, FF input acts as output pin, FF output acts as input pin
- Critical path is a path with max delay among all paths
- In addition to the "arrival time" of each node, we are interested in knowing the "slack" of each node / edge

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays $=1$, wire delay $=0$
 - Clock period $=7$
- Question: What is the maximum amount of delay each gate can be slower not to violate timing?

\qquad

STA: Issues

- STA can be done in linear time

- How to implement?
- What would change if wires have non-zero delays? \qquad
- If the delay of one gate changes, what is the time complexity of updating the slack of all nodes? \qquad
- How can slack be used?
- How to distribute a path's slack to different edges? (the budgeting problem)
- How to maintain a list of K-most critical paths?
- Why important?
\qquad
- Variation: paths of delay > D
- What is the upper bound on the number of such paths?

Minimum Spanning Tree (MST)

- Tree (usually undirected):
- Connected graph with no cycles
- $|\mathrm{E}|=|\mathrm{V}|-1$
- Spanning tree
- Connected subgraph that covers all vertices
- If the original graph not tree, graph has several spanning trees
- Minimum spanning tree
- Spanning tree with minimum sum of edge weights (among all spanning trees)
- Example: build a railway system to connect N cities, with the smallest total length of the railroad

Difference Between MST and Shortest Path

- Why can't Dijkstra solve the MST problem?
- Shortest path: min sum of edge weight to individual nodes \qquad
- MST: min sum of TOTAL edge weights that connect all vertices
- Proposal:
- Pick any vertex, run Dijkstra and note the paths to all nodes (prove no cycles created)
- Debunk: show a counter example

Fall 2006

Minimum Spanning Tree Algorithms

- Basic idea:
- Start from a vertex (or edge), and expand the tree, avoiding loops (i.e., add a "safe" edge)
- Pick the minimum weight edge at each step
- Known algorithms
- Prim: start from a vertex, expand the connected tree
- Kruskal: start with the min weight edge, add min weight edges while avoiding cycles (build a forest of small trees, merge them)

Prim's Algorithm for MST

- Data structure:
- S set of nodes added to the tree so far
- S^{\prime} set of nodes not added to the tree yet
- T the edges of the MST built so far
- $\lambda(w) \quad$ current length of the shortest edge ($v, w)$ that connects w to the current tree
- $\pi(w) \quad$ potential parent node of w in the final MST (current parent that connects w to the current tree)

Prim's Algorithm

- Initialize $\mathrm{S}, \mathrm{S}^{\prime}$ and T
o $S \leftarrow\left\{u_{0}\right\}, S^{\prime} \leftarrow V \backslash\left\{u_{0}\right\} \quad / / u_{0}$ is any vertex
o T $\leftarrow\}$
o $\forall v \in S^{\prime}, \lambda(v) \leftarrow \infty$
- Initialize λ and π for the vertices adjacent to u_{0}
o For each $v \in S^{\prime}$ s.t. $\left(u_{0}, v\right) \in E$,
- $\lambda(v) \leftarrow \omega\left(\left(u_{0}, v\right)\right)$
- $\pi(v) \leftarrow u_{0}$
- While ($\mathrm{S}^{\prime}!=\phi$)
o Find $u \in S^{\prime}$, s.t. $\forall v \in S^{\prime}, \lambda(u) \leq \lambda(v)$
$\circ S \leftarrow S \cup\{u\}, \quad S^{\prime} \leftarrow S^{\prime} \backslash\{u\}, T \leftarrow T \cup\{(\pi(u), u)\}$ \qquad
- For each v s.t. $(u, v) \in E$,
- If $\lambda(v)>\omega((u, v))$ then
$\lambda(v) \leftarrow \omega((u, v))$
$\pi(\mathrm{v}) \leftarrow \mathrm{u}$
Fall 2006
EE 5301 - VLSI Design Automation I
II-45

Other Graph Algorithms of Interest...

- Min-cut partitioning
- Graph coloring
- Maximum clique, independent set
- Min-cut algorithms
- Steiner tree
- Matching
- ...

Fall 2006	

Useful Links (Also Linked from Course WebPage)	
	Algorithms and Visualization - Compaq's JCAT: allows users to run a number of algorithms in their web browsers and visualize the progress of the program. http://www.research.compaq.com/SRC/JCAT/ - SGI's Standard Template Library (click on the "Index" link. "Table of contents" is very useful too). http://www.sgi.com/tech/sti/ - Microsoft MSDN library (If you don't know where to go, type "fopen" in the "Search for" textbox and click "GO" for normal C functions, and then navigate using the tree on the left. For STL documentation, search for "vector::push back".) http://msdn.microsoft.com/library/default.asp Books on STL and templtes (thanks to Arvind Karandikar @ U of M for suggesting thebooks) : - Nicolai M. Josuttis, "The C++ Standard Library: A Tutorial and Reference", Addison-Wesley, 1999, ISBN: 0-201-37926-0. - David Vanevoorde and Nicolai M. Josuttis, "C++ Templates, the Complete Guide", Addison-Wesley, 2003,'ISBN: 0-201-73484-2.
	2006 EE 5301- VLSI Design Automation I

Useful Links (cont.)
- Time Complexity and Asymptotic Notations
- www.cs.sunysb.edu/~skiena/548/lectures/lecture2.ps
- Asymptotic bounds: definitions and theorems
http://userpages.umbc.edu/~anastasi/Courses/341/Spr00/Lecture
s/Asymptotic/asymptotic/asymptotic.html
- www.cs.yorku.ca/~ruppert/6115W-01/bigO.ps
- CMSC 341 (at CSEE/UMBC) Lecture 2
http://www.csee.umbc.edu/courses/undergraduate/CMSC341/fall 02/Lectures/AA/AsymptoticAnalysis.ppt
- Michael A. Trick, "A Tutorial on Dynamic Programming",
http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html
FFall 2006 \quad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: EE 5301 - VLSI Design Automation I

