

References and Copyright Textbooks referred (none required) [Mic94] G. De Micheli

- "Synthesis and Optimization of Digital Circuits" McGraw-Hill, 1994.
 [CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms"
- MIT Press, 1990. • [Sar96] M. Sarrafzadeh, C. K. Wong "An Introduction to VLSI Physical Design"

Fall 2006

Fall 2006

McGraw-Hill, 1996. • [She99] N. Sherwani "Algorithms For VLSI Physical Design Automation" Kluwer Academic Publishers, 3rd edition, 1999.

EE 5301 - VLSI Design Automation I

References and Copyright (cont.)

 Slides used: (Modified by Kia when necessary)

 [©Sarrafzadeh] © Majid Sarrafzadeh, 2001; Department of Computer Science, UCLA
 [©Sherwani] © Naveed A. Sherwani, 1992 (companion slides to [She99])
 [©Keutzer] © Kurt Keutzer, Dept. of EECS, UC-Berekeley http://www-cad.eecs.berkeley.edu/~niraj/ee244/index.htm
 [©Gupta] © Rajesh Gupta UC-Irvine http://www.ics.uci.edu/~rgupta/ics280.html

EE 5301 - VLSI Design Automation I

http://www.ece.umn.edu/users/kia/Courses/EE5301/

Asymptotic Notions				
• Idea:				
 A notion that ignores the "constants" and describes the "trend" of a function for large values of the input 				
Definition				
• Big-Oh notation $f(n) = O(g(n))$ if constants K and n_0 can be found such that: $\forall n \ge n_0$, $f(n) \le K$. $g(n)$				
g is called an "upper bound" for f (f is "of order" g: f will not grow larger than g by more than a constant factor)				
Examples: $1/3 n^2 = O(n^2)$ (also $O(n^3)$) $0.02 n^2 + 127 n + 1923 = O(n^2)$				
Fall 2006 EE 5301 - VLSI Design Automation I	[-8			

	Asymptotic Notions (cont.)	
	efinition (cont.) Big-Omega notation $f(n) = \Omega (g(n))$ if constants K and n_0 can be found such that: $\forall n \ge n_0$, $f(n) \ge K$. $g(n)$	
	g is called a "lower bound" for f	
-	Big-Theta notation $f(n) = \Theta (g(n))$ if g is both an upper and lower bound for f Describes the growth of a function more accurately than O or Ω Example: $n^3 + 4 n \neq \Theta (n^2)$ $4 n^2 + 1024 = \Theta (n^2)$	
Fall 2006	EE 5301 - VLSI Design Automation I	П-

	Dijkstra's Algorithm	
 Objectiv 	re:	
	<i>(u,v)</i> for all pairs (u,v) <u>(fixed u)</u> and rresponding shortest paths uv	
How do	es it work?	
	rom the source, augment the set of nodes shortest path is found.	
	ase $\lambda(w)$ from ∞ to $d(u, v)$ as you find shorter ces to w. $\pi(w)$ changed accordingly.	
• Data str	ucture:	
• S	the set of nodes whose $d(u, v)$ is found	
■ λ(w)	current length of the shortest path uw	
■ π(W)	current parent node of w on u—w	
Fall 2006	EE 5301 - VLSI Design Automation I	II-33

Static Timing Analysis

EE 5301 - VLSI Design Automation

Fall 2006

Fall 2006

- Finding the longest path in a general graph is NP-hard, even when edges are not weighted
- Polynomial for DAG (directed acyclic graphs)
- In circuit graphs, "static timing analysis (STA)"...
 - ...refers to the problem of finding the max delay from the input pins of the circuit (esp nodes) to each gate
 - Max delay of the output pins determines clock periodIn sequential circuits, FF input acts as output pin,
 - FF output acts as input pin
 - Critical path is a path with max delay among all paths
 - In addition to the "arrival time" of each node, we are interested in knowing the "slack" of each node / edge

EE 5301 - VLSI Design Automation I

Minimum Spanning Tree (MST)

- Tree (usually undirected):
 - Connected graph with no cycles
 - |E| = |V| 1
- Spanning tree
 - Connected subgraph that covers all verticesIf the original graph not tree,
 - graph has several spanning trees

• Minimum spanning tree

- Spanning tree with minimum sum of edge weights (among all spanning trees)
- Example: build a railway system to connect N cities, with the smallest total length of the railroad

EE 5301 - VLSI Design Automation I

Fall 2006

	Prim's Algorithm for MST
• Data st	ructure:
• S	set of nodes added to the tree so far
■ S′	set of nodes not added to the tree yet
• T	the edges of the MST built so far
■ λ(w)	current length of the <u>shortest edge</u> (v, w) that connects w to the current tree
■ π(W)	potential <u>parent</u> node of w in the final MST (current parent that connects w to the current tree)
Fall 2006	EE 5301 - VLSI Design Automation I II-44

	Prim's Algorithm	
	$ \begin{array}{l} \mbox{Initialize S, S' and T} \\ o \ S \leftarrow \{u_0\}, S' \leftarrow V \setminus \{u_0\} \ // \ u_0 \ \mbox{is any vertex} \\ o \ T \leftarrow \{ \} \\ o \ \forall \ v \in S', \ \lambda(v) \leftarrow \infty \\ \mbox{Initialize } \lambda \ \mbox{and } \pi \ \mbox{for the vertices adjacent to } u_0 \\ o \ \mbox{For each } v \in S' \ \ s.t. \ (u_0, v) \in E, \\ & \lambda(v) \leftarrow \omega \ ((u_0, v)) \\ & \pi(v) \leftarrow u_0 \\ \mbox{While } (S' \ \ = \ \varphi) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Fall 2006	EE 5301 - VLSI Design Automation I	II-45

Useful Links (Also Linked from Course WebPage)

- Algorithms and Visualization
 - Compag's JCAT: allows users to run a number of algorithms in their web browsers and visualize the progress of the program. http://www.research.compaq.com/SRC/JCAT/
 - SGI's Standard Template Library (click on the "Index" link. "Table of contents" is very useful too). http://www.sgi.com/tech/stl/
 - Microsoft MSDN library (If you don't know where to go, type "fopen" in the "Search for" textbox and click "GO" for normal C functions, and then navigate using the tree on the left. For STL documentation, search for "vector:push_back".) http://msdn.microsoft.com/library/default.asp
- Books on STL and tempItes (thanks to Arvind Karandikar)
 Books on STL and tempItes (thanks to Arvind Karandikar @ U of M for suggesting thebooks) :
 Nicolai M. Josuttis, "The C++ Standard Library: A Tutorial and Reference", Addison-Wesley, 1999, ISBN: 0-201-37926-0.
- David Vanevoorde and Nicolai M. Josuttis, "C++ Templates, the Complete Guide", Addison-Wesley, 2003, ISBN: 0-201-73484-2.

EE 5301 - VLSI Design Automation I

Fall 2006

Fall 2006

Useful Links (cont.)

- Time Complexity and Asymptotic Notations
 - www.cs.sunysb.edu/~skiena/548/lectures/lecture2.ps Asymptotic bounds: definitions and theorems
 - http://userpages.umbc.edu/~anastasi/Courses/341/Spr00/Lecture s/Asymptotic/asymptotic/asymptotic.html
 - www.cs.yorku.ca/~ruppert/6115W-01/bigO.ps
 - CMSC 341 (at CSEE/UMBC) Lecture 2 http://www.csee.umbc.edu/courses/undergraduate/CMSC341/fall 02/Lectures/AA/AsymptoticAnalysis.ppt
 - Michael A. Trick, "A Tutorial on Dynamic Programming", http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html

EE 5301 - VLSI Design Automation I

VLSI Design Automation I - © Kia Bazargan

http://www.ece.umn.edu/users/kia/Courses/EE5301/

