
http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-1

EE 5301 – VLSI Design Automation IEE 5301 – VLSI Design Automation I

Kia Bazargan

University of Minnesota

Part II: AlgorithmsPart II: Algorithms

Fall 2006 EE 5301 - VLSI Design Automation I II-2

References and Copyright

• Textbooks referred (none required)
[Mic94] G. De Micheli
“Synthesis and Optimization of Digital Circuits”
McGraw-Hill, 1994.
[CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest
“Introduction to Algorithms”
MIT Press, 1990.
[Sar96] M. Sarrafzadeh, C. K. Wong
“An Introduction to VLSI Physical Design”
McGraw-Hill, 1996.
[She99] N. Sherwani
“Algorithms For VLSI Physical Design Automation”
Kluwer Academic Publishers, 3rd edition, 1999.

Fall 2006 EE 5301 - VLSI Design Automation I II-3

References and Copyright (cont.)

• Slides used: (Modified by Kia when necessary)
[©Sarrafzadeh] © Majid Sarrafzadeh, 2001;

Department of Computer Science, UCLA
[©Sherwani] © Naveed A. Sherwani, 1992

(companion slides to [She99])
[©Keutzer] © Kurt Keutzer, Dept. of EECS,

UC-Berekeley
http://www-cad.eecs.berkeley.edu/~niraj/ee244/index.htm

[©Gupta] © Rajesh Gupta
UC-Irvine

http://www.ics.uci.edu/~rgupta/ics280.html

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-4

Combinatorial Optimization

• Problems with discrete variables
Examples:

o SORTING: given N integer numbers, write them in
increasing order

o KNAPSACK: given a bag of size S, and items {(s1, w1), (s2, w2),
..., (sn, wn)}, where si and wi are the size and value of item i
respectively, find a subset of items with maximum overall
value that fit in the bag.

o More examples: http://www.research.compaq.com/SRC/JCAT/

A problem vs. problem instance

• Problem complexity:
Measures of complexity
Complexity cases: average case, worst case
Tractability - solvable in polynomial time [©Gupta]

Fall 2006 EE 5301 - VLSI Design Automation I II-5

Algorithm

• An algorithm defines a procedure for solving a
computational problem

Examples:
o Quick sort, bubble sort, insertion sort, heap sort
o Dynamic programming method for the knapsack problem

• Definition of complexity
Run time on deterministic, sequential machines
Based on resources needed to implement the
algorithm

o Needs a cost model: memory, hardware/gates,
communication bandwidth, etc.

o Example: RAM model with single processor

running time ∝ # operations
[©Gupta]

Fall 2006 EE 5301 - VLSI Design Automation I II-6

Algorithm (cont.)

• Definition of complexity (cont.)
Example: Bubble Sort
Scalability with respect to input
size is important

o How does the running time of an
algorithm change when the input size
doubles?

o Function of input size (n).
Examples: n2+3n, 2n, n log n, ...

o Generally, large input sizes are of
interest
(n > 1,000 or even n > 1,000,000)

o What if I use a better compiler?
What if I run the algorithm on a
machine that is 10x faster?

[©Gupta]

for (j=1 ; j< N; j++) {
for (i=; i < N-j-1; i++) {

if (a[i] > a[i+1]) {
hold = a[i];
a[i] = a[i+1];
a[i+1] = hold;
}

}
}

for (j=1 ; j< N; j++) {
for (i=; i < N-j-1; i++) {

if (a[i] > a[i+1]) {
hold = a[i];
a[i] = a[i+1];
a[i+1] = hold;
}

}
}

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-7

Function Growth Examples
Function Growth

0
40
80

120
160
200

1 6 11 16 21 26 n

f(n) 5n 0.1n^2+2n+40 2 n log n 0.00001 2^n

Function Growth

0

2000

4000

6000

8000

10000

10 210 410 610 810 1010 n

f(n) 5n 0.1n^2+2n+40 2 n log n 0.00001 2^n

Fall 2006 EE 5301 - VLSI Design Automation I II-8

Asymptotic Notions

• Idea:
A notion that ignores the “constants” and describes the
“trend” of a function for large values of the input

• Definition
Big-Oh notation f(n) = O (g(n))
if constants K and n0 can be found such that:
∀ n ≥ n0, f(n) ≤ K. g(n)

g is called an “upper bound” for f
(f is “of order” g: f will not grow larger than g by more
than a constant factor)

Examples: 1/3 n2 = O (n2) (also O(n3))
0.02 n2 + 127 n + 1923 = O (n2)

Fall 2006 EE 5301 - VLSI Design Automation I II-9

Asymptotic Notions (cont.)

• Definition (cont.)
Big-Omega notation f(n) = Ω (g(n))
if constants K and n0 can be found such that:
∀ n ≥ n0, f(n) ≥ K. g(n)

g is called a “lower bound” for f

Big-Theta notation f(n) = Θ (g(n))
if g is both an upper and lower bound for f
Describes the growth of a function more accurately
than O or Ω
Example:

n3 + 4 n ≠ Θ (n2)
4 n2 + 1024 = Θ (n2)

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-10

Asymptotic Notions (cont.)

• How to find the order of a function?
Not always easy, esp if you start from an algorithm
Focus on the “dominant” term

o 4 n3 + 100 n2 + log n O(n3)
o n + n log(n) n log (n)

n! = Kn > nK > log n > log log n > K
⇒ n > log n, n log n > n, n! > n10.

• What do asymptotic notations mean in practice?
If algorithm A has “time complexity” O(n2)
and algorithm B has time complexity O(n log n), then
algorithm B is better
If problem P has a lower bound of Ω(n log n), then
there is NO WAY you can find an algorithm that solves
the problem in O(n) time.

Fall 2006 EE 5301 - VLSI Design Automation I II-11

Problem Tractability

• Problems are classified into “easier” and “harder”
categories

Class P: a polynomial time algorithm is known for the problem
(hence, it is a tractable problem)
Class NP (non-deterministic polynomial time):
~ polynomial solution not found yet
(probably does not exist)

exact (optimal) solution can be found using an algorithm with
exponential time complexity

• Unfortunately, most CAD problems are NP
Be happy with a “reasonably good” solution

• Reading material on time complexity and NP-
completeness:

Textbook section 3.3, Chapter 4
See the “Useful Links” slides at the end [©Gupta]

Also in case anybody cares, it is incorrect to
describe an optimization problem as NP-
complete. Only decision problems with
"Yes/No" (e.g. "does a solution exist of size
K") answers can properly be termed NP-
complete. Optimization problems (e.g. "find
the best solution") are usually "NP-Hard". In
polite company (and most journals) incorrect
but well intentioned uses of "NP-complete"
are accepted. -Craig Chase

Fall 2006 EE 5301 - VLSI Design Automation I II-12

Algorithm Types

• Based on quality of solution and computational
effort

Deterministic
Probabilistic or randomized
Approximation
Heuristics: local search

• Problem vs. algorithm complexity

[©Gupta]

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-13

Deterministic Algorithm Types

• Algorithms usually used for P problems
Exhaustive search! (aka exponential)
Dynamic programming
Divide & Conquer (aka hierarchical)
Greedy
Mathematical programming
Branch and bound

• Algorithms usually used for NP problems
(not seeking “optimal solution”, but a “good” one)

Greedy (aka heuristic)
Genetic algorithms
Simulated annealing
Restrict the problem to a special case that is in P

Fall 2006 EE 5301 - VLSI Design Automation I II-14

Dynamic Programming

• (read the first two examples in the document
written by Michael A. Trick – see the “Useful
Links (cont.)” slide)

Plant proposals
Shortest path

• 0-1 Knapsack problem:
Given N discrete items of size si and value vi, how to fill
a knapsack of size M to get the maximum value? There
is only one of each item that can be either taken in
whole or left out.

• Solution to the knapsack problem:
http://www.cee.hw.ac.uk/~alison/ds98/node122.html

Fall 2006 EE 5301 - VLSI Design Automation I II-15

Dynamic Programming: Knapsack

• Partial solution constructed for items 1..(i-1) for
knapsack sizes from 0..M:

cw

c0 c1 c2 cM-1 cM…i-1

0 1 2 M-1 M

• For each knapsack size, how to extend the
solution from 1..(i-1) to include i?

i-1

w

cwi

Option 1: do not take item i

i-1

w

cw-si
+vi

i

Option 2: take item i
w-si

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-16

Graph Definition

• Graph: set of “objects” and their “connections”
• Formal definition:

G = (V, E), V={v1, v2, ..., vn}, E={e1, e2, ..., em}
V: set of vertices (nodes), E: set of edges (links, arcs)
Directed graph: ek = (vi, vj)
Undirected graph: ek={vi, vj}
Weighted graph: w: E R, w(ek) is the “weight” of ek.

a

c

de b

a

c

de b

Fall 2006 EE 5301 - VLSI Design Automation I II-17

Graph Representation: Adjacency List

a

c

de b

a

c

de b

b ·
c ·
d ·
e ·

a · b · d · c ·

a · d ·

a ·

e · b ·

b ·

a ·
d ·

b ·
c ·
d ·
e ·

a · b · d ·

a ·

a ·

b ·

e ·

d ·

Fall 2006 EE 5301 - VLSI Design Automation I II-18

Graph Representation: Adjacency Matrix

a

c

de b

a

c

de b

b
c
d
e

a
b c d ea
1 1 1 00

0 0 1 01

0 0 0 01
1 0 0 11

0 0 1 00

b
c
d
e

a
b c d ea
1 0 1 00
0 0 1 00

0 0 0 01

0 0 0 11

0 0 0 00

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-19

Edge / Vertex Weights in Graphs

• Edge weights
Usually represent the “cost” of an edge
Examples:

o Distance between two cities
o Width of a data bus

Representation
o Adjacency matrix: instead of 0/1, keep weight
o Adjacency list: keep the weight in the linked

list item

• Node weight
Usually used to enforce some “capacity”
constraint
Examples:

o The size of gates in a circuit
o The delay of operations in a “data

dependency graph”

a

c

de b

2

1.501
3

-2

a

-

+

*

b 55

1

3
1

Fall 2006 EE 5301 - VLSI Design Automation I II-20

Hypergraphs

• Hypergraph definition:
Similar to graphs, but edges not between pairs of
vertices, but between a set of vertices
Directed / undirected versions possible
Just like graphs, a node can be the source (or be
connected to) multiple hyperedges

• Data structure?

1

2 4

3

5

1 3

5

42

Fall 2006 EE 5301 - VLSI Design Automation I II-21

Graph Search Algorithms

• Purpose: to visit all the nodes
• Algorithms

Depth-first search
Breadth-first search
Topological

• Examples

[©Sherwani]

A
B
G
F
D
E
C

A
B

D E

F

C

G

B

A

E G F

CD

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-22

Depth-First Search Algorithm

struct vertex {
...
int mark;

};

dfs (v)
v.marked 1
print v
for each (v, u) ∈ E

if (u.mark != 1) // not visited yet?
dfs (u)

Algorithm DEPTH_FIRST_SEARCH (V, E)
for each v ∈ V

v.marked 0 // not visited yet
for each v ∈ V

if (v.marked == 0)
dfs (v)

Fall 2006 EE 5301 - VLSI Design Automation I II-23

Breadth-First Search Algorithm

bfs (v , Q)
v.marked 1
for each (v, u) ∈ E

if (u.mark != 1) // not visited yet?
Q Q + u

Algorithm BREADTH_FIRST_SEARCH (V, E)
Q {v0} // an arbitrary node
while Q != {}

v Q.pop()
if (v.marked != 1)

print v
bfs (v) // explore successors

There is something wrong with this code. What is it?There is something wrong with this code. What is it?

Fall 2006 EE 5301 - VLSI Design Automation I II-24

Distance in (non-weighted) Graphs

• Distance dG(u,v):
Length of a shortest u--v path in G.

u v

d(u,v)=2

x
y
d(x,y) = ∞

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-25

Moor’s Breadth-First Search Algorithm

• Objective:
Find d(u,v) for a given pair (u,v) and
a shortest path u--v

• How does it work?
Do BFS, and assign λ(w) the first time you visit a
node. λ(w)=depth in BFS.

• Data structure
Q a queue containing vertices to be visited
λ(w) length of the shortest path u--w (initially ∞)
π(w) parent node of w on u--w

Fall 2006 EE 5301 - VLSI Design Automation I II-26

Moor’s Breadth-First Search Algorithm

• Algorithm:
1. Initialize

o λ(w) ← ∞ for w≠u
o λ(u) ← 0
o Q ← Q+u

2. If Q ≠ φ, x ← pop(Q)
else stop: “no path u--v”

3. ∀(x,y)∈E,
o if λ(y)=∞, π(y) ← x
o λ(y) ← λ(x)+1
o Q ← Q+y

4. If λ(v)=∞ return to step 2
5. Follow π(w) pointers from v to u.

Fall 2006 EE 5301 - VLSI Design Automation I II-27

Moor’s Breadth-First Search Algorithm

u

v1

v2 v3

v4
v5

v6

v7
v8 v9

v10
Q = u
Node u v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

λ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
π - - - - - - - - - - -

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-28

Moor’s Breadth-First Search Algorithm

u

v1

v2 v3

v4
v5

v6

v7
v8 v9

v10
Q = v1, v2, v5

Node u v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

λ 0 1 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞
π - u u - - u - - - - -

Fall 2006 EE 5301 - VLSI Design Automation I II-29

Moor’s Breadth-First Search Algorithm

u

v1

v2 v3

v4
v5

v6

v7
v8 v9

v10
Q = v4, v3, v6, v10

Node u v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

λ 0 1 1 2 2 1 2 ∞ ∞ ∞ 2
π - u u v2 v1 u v5 - - - v5

Fall 2006 EE 5301 - VLSI Design Automation I II-30

Moor’s Breadth-First Search Algorithm

u

v1

v2 v3

v4
v5

v6

v7
v8 v9

v10
Q = v7

Node u v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

λ 0 1 1 2 2 1 2 3 ∞ ∞ 2
π - u u v2 v1 u v5 v4 - - v5

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-31

Notes on Moor’s Algorithm

• Why the problem of BREADTH_FIRST_SEARCH
algorithm does not exist here?

• Time complexity?
• Space complexity?

Fall 2006 EE 5301 - VLSI Design Automation I II-32

Distance in Weighted Graphs

• Why a simple BFS doesn’t work
any more?

Your locally best solution is not
your globally best one

First, v1 and v2 will be visited

u

v1

v2

3
11

2

λ=3
π=u

λ=11
π=u

v2 should be revisited

u

v1

v2

3
11

2

λ=3
π=u

λ=5
π=v1

Fall 2006 EE 5301 - VLSI Design Automation I II-33

Dijkstra’s Algorithm

• Objective:
Find d(u,v) for all pairs (u,v) (fixed u) and
the corresponding shortest paths u--v

• How does it work?
Start from the source, augment the set of nodes
whose shortest path is found.
decrease λ(w) from ∞ to d(u,v) as you find shorter
distances to w. π(w) changed accordingly.

• Data structure:
S the set of nodes whose d(u,v) is found
λ(w) current length of the shortest path u--w
π(w) current parent node of w on u—w

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-34

Dijkstra’s Algorithm

O(e)

O(v2)

• Algorithm:
1. Initialize

o λ(v) ← ∞ for v≠u
o λ(u) ← 0
o S ← {u}

2. For each v∈S’ s.t. uiv∈E,
o If λ(v) > λ(ui) + w(ui v),

• λ(v) ← λ(ui) + w(ui v)
• π(v) ← ui

3. Find m=min{λ(v)|v∈S’ } and
λ(vj)==m
o S ← S ∪ {vj}

4. If |S|<|V|, goto step 2

Fall 2006 EE 5301 - VLSI Design Automation I II-35

Dijkstra’s Algorithm - why does it work?

• Proof by contradiction
Suppose v is the first node being added to S such
that λ(v) > d(u0,v) (d(u0,v) is the “real” shortest
u0--v path)
The assumption that λ(v) and d(u0,v) are different,
means there are different paths with lengths λ(v)
and d(u0,v)
Consider the path that has
length d(u0,v). Let x be
the first node in S’ on this path
d(u0,v) < λ(v) , d(u0,v)≥λ(x)+ α
=> λ(x)< λ(v) => contradiction

u0

v

x

Fall 2006 EE 5301 - VLSI Design Automation I II-36

Static Timing Analysis

• Finding the longest path in a general graph
is NP-hard, even when edges are not weighted

• Polynomial for DAG (directed acyclic graphs)
• In circuit graphs, “static timing analysis (STA)”…

…refers to the problem of finding the max delay from
the input pins of the circuit (esp nodes) to each gate
Max delay of the output pins determines clock period
In sequential circuits, FF input acts as output pin,
FF output acts as input pin
Critical path is a path with max delay among all paths
In addition to the “arrival time” of each node, we are
interested in knowing the “slack” of each node / edge

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-37

STA Example: Arrival Times

e
g

b

h

c
f

d

a

0

0

0

0

0

0

1

1

1

2

2

3 3

4 4

5 5

• Assumptions:
All inputs arrive at time 0
All gate delays = 1
All wire delays = 0

• Question: Arrival time of each gate? Circuit delay?

ti = max {tj} + di

Fall 2006 EE 5301 - VLSI Design Automation I II-38

STA Example: Required Times
• Assumptions:

All inputs arrive at time 0
All gate delays = 1, wire delay = 0
Clock period = 7

• Question: maximum required time (RT) of each gate? (i.e., if the gate
output is generated later than RT, clk period is violated)

e
g

b

h

c
f

d

a

2

2

2

3

3

3

4

4

7

7

7 7

6

6

5

5

5

ri = min {rj-dj }

Fall 2006 EE 5301 - VLSI Design Automation I II-39

STA Example: Slack
• Assumptions:

All inputs arrive at time 0
All gate delays = 1, wire delay = 0
Clock period = 7

• Question: What is the maximum amount of delay each gate can be
slower not to violate timing?

e
g

b

h

c
f

d

a

si = ri-ti

2-0=2

2-0=2

2-0=2

3-0=3

5-0=5

5-0=5

3-1=2

3-1=2

4-2=2

4-2=2

5-3=2

6-1=5

6-4=2 7-4=3

7-5=2

7-5=2

7-3=4

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-40

STA: Issues

• STA can be done in linear time
How to implement?

• What would change if wires have non-zero delays?
• If the delay of one gate changes, what is the time

complexity of updating the slack of all nodes?
• How can slack be used?
• How to distribute a path’s slack to different edges? (the

budgeting problem)
• How to maintain a list of K-most critical paths?

Why important?
Variation: paths of delay > D
What is the upper bound on the number of such paths?

Fall 2006 EE 5301 - VLSI Design Automation I II-41

Minimum Spanning Tree (MST)

• Tree (usually undirected):
Connected graph with no cycles
|E| = |V| - 1

• Spanning tree
Connected subgraph that covers all vertices
If the original graph not tree,
graph has several spanning trees

• Minimum spanning tree
Spanning tree with minimum sum of edge weights
(among all spanning trees)
Example: build a railway system to connect N cities,
with the smallest total length of the railroad

Fall 2006 EE 5301 - VLSI Design Automation I II-42

Difference Between MST and Shortest Path

• Why can’t Dijkstra solve the MST problem?
Shortest path: min sum of edge weight

to individual nodes
MST: min sum of TOTAL edge weights that connect

all vertices
• Proposal:

Pick any vertex, run Dijkstra and note the paths to all
nodes (prove no cycles created)

• Debunk: show a counter example

a

b

c

5

4

2 Draw on your
slides!

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-43

Minimum Spanning Tree Algorithms

• Basic idea:
Start from a vertex (or edge), and expand the tree,
avoiding loops (i.e., add a “safe” edge)
Pick the minimum weight edge at each step

• Known algorithms
Prim: start from a vertex, expand the connected tree
Kruskal: start with the min weight edge,
add min weight edges while avoiding cycles
(build a forest of small trees, merge them)

Fall 2006 EE 5301 - VLSI Design Automation I II-44

Prim’s Algorithm for MST

• Data structure:
S set of nodes added to the tree so far
S’ set of nodes not added to the tree yet
T the edges of the MST built so far
λ(w) current length of the shortest edge (v, w)

that connects w to the current tree
π(w) potential parent node of w in the final MST

(current parent that connects w to the current
tree)

Fall 2006 EE 5301 - VLSI Design Automation I II-45

Prim’s Algorithm

Initialize S, S’ and T
o S ← {u0}, S’ ← V \ {u0} // u0 is any vertex
o T ← { }
o ∀ v∈S’ , λ(v) ← ∞

Initialize λ and π for the vertices adjacent to u0
o For each v∈S’ s.t. (u0,v)∈E,

• λ(v) ← ω ((u0,v))
• π(v) ← u0

While (S’ != φ)
o Find u∈S’, s.t. ∀ v∈S’ , λ(u) ≤ λ(v)
o S ← S ∪ {u}, S’ ← S’ \ {u}, T ← T ∪ { (π(u), u) }
o For each v s.t. (u, v) ∈ E,

• If λ(v) > ω((u,v)) then
λ(v) ← ω((u,v))
π(v) ← u

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-46

Other Graph Algorithms of Interest...

• Min-cut partitioning
• Graph coloring
• Maximum clique, independent set
• Min-cut algorithms
• Steiner tree
• Matching
• ...

Fall 2006 EE 5301 - VLSI Design Automation I II-47

Useful Links (Also Linked from Course WebPage)

• Algorithms and Visualization
Compaq's JCAT: allows users to run a number of algorithms in their web
browsers and visualize the progress of the program.
http://www.research.compaq.com/SRC/JCAT/

SGI's Standard Template Library (click on the "Index" link. "Table of
contents" is very useful too).
http://www.sgi.com/tech/stl/

Microsoft MSDN library (If you don't know where to go, type "fopen" in
the "Search for" textbox and click "GO" for normal C functions, and then
navigate using the tree on the left. For STL documentation, search for
"vector::push_back".)
http://msdn.microsoft.com/library/default.asp

• Books on STL and templtes (thanks to Arvind Karandikar @ U of M
for suggesting thebooks) :

Nicolai M. Josuttis, “The C++ Standard Library: A Tutorial and
Reference”, Addison-Wesley, 1999, ISBN: 0-201-37926-0.

David Vanevoorde and Nicolai M. Josuttis, “C++ Templates, the
Complete Guide”, Addison-Wesley, 2003, ISBN: 0-201-73484-2.

Fall 2006 EE 5301 - VLSI Design Automation I II-48

Useful Links (cont.)

• Time Complexity and Asymptotic Notations
www.cs.sunysb.edu/~skiena/548/lectures/lecture2.ps

Asymptotic bounds: definitions and theorems
http://userpages.umbc.edu/~anastasi/Courses/341/Spr00/Lecture
s/Asymptotic/asymptotic/asymptotic.html

www.cs.yorku.ca/~ruppert/6115W-01/bigO.ps

CMSC 341 (at CSEE/UMBC) Lecture 2
http://www.csee.umbc.edu/courses/undergraduate/CMSC341/fall
02/Lectures/AA/AsymptoticAnalysis.ppt

Michael A. Trick, “A Tutorial on Dynamic Programming”,
http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html

http://www.ece.umn.edu/users/kia/Courses/EE5301/

VLSI Design Automation I – © Kia Bazargan

Fall 2006 EE 5301 - VLSI Design Automation I II-49

Papers
• C. J. Alpert, A. Devgan, S. T. Quay, “Buffer insertion with accurate

gate and interconnect delay computation”, Design Automation
Conference, pp. 479–484, 1999.

Shows that the Elmore model overesimates delay, offers a new, more
accurate model. Uses this model to optimize the buffer insertion

Fall 2006 EE 5301 - VLSI Design Automation I II-50

From
: http://w

w
w

.diku.dk/~pisinger/KN
APD

EM
O

/

[D
ynam

ic program
m

ing, data.3, prim
al, table, no bounds]

